skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Ennis, R. S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Many studies have evaluated the impacts of hurricanes on coral communities, but far less is known about impacts, recovery, and resilience of sponge communities to these extreme events. In September 2017, St. Thomas, U.S. Virgin Islands, was impacted by two Category 5 hurricanes within 2 weeks: Hurricanes Irma and Maria. Such extreme events occurring in such rapid succession are virtually unprecedented. Pre-hurricane (2015, 2016) surveys of permanent transects at six sites around St. Thomas were compared with those at 10 weeks post-hurricanes (December 2017) to evaluate storm impacts on sponges and on benthic coral reef constituents. These surveys also established a baseline for evaluating future recovery. Percent cover of sponges declined by 24.9% post-hurricanes. In contrast, sponge density increased by 43.9% from 2015 to 2016 and declined slightly after the hurricanes. Overall sponge volume did not vary over time, and whereas sponge diversity was similar in 2015 and 2016, it increased post-hurricanes. Sponge morphologies were differentially affected by the hurricanes; the proportion of upright sponges declined by 36.9%, while there was a 24.4% increase in encrusting sponges. Coral and macroalgal cover did not change significantly over the sampling period, while percent cover of epilithic algae increased and non-living substrata decreased from 2015 to 2016 but did not change further post-hurricanes. At all sites, recruitment and/or regrowth of sponges was observed within 10 weeks post-hurricanes, indicating potential resilience in Caribbean sponge communities. Whether these sponge communities return to pre-hurricane conditions and how long that will take remains to be seen. 
    more » « less